创业各个阶段应该如何进行数据分析

  创始阶段(0至10名员工)在这个阶段,你没有资源,没有时间。你需要衡量一百万件事情。但是你非常熟悉业务细节,你可以做出相当好的本能决定。你需要测量你的产品。

  创始阶段
  (0至10名员工)
  在这个阶段,你没有资源,没有时间。你需要衡量一百万件事情。但是你非常熟悉业务细节,你可以做出相当好的本能决定。你需要测量你的产品。因为你的产品指标,可帮助你在此关键阶段快速迭代。其他一切都可以往后排。
  什么该做
  通过 Google Tag Manager在你的网站上安装Google Analytics。数据不会很完美,这需要更多的工作来润色,但不要担心。
  如果你做电子商务业务,你确实需要确保你的Google Analytics电子商务数据良好。Google Analytics可以跟踪从访客到购买的整个电子商务业流程,所以你需要花时间来确保Google Analytics数据是正确的。
  构建任何类型的软件,你都需要实时的事件跟踪。我不在乎你使用什么工具——Mixpanel和Heap是类似的,他们都很好。在这一点上,我不会太在意你正在追踪的内容:只需使用Mixpanel的autotrack或者Heap的默认安装设置。如果你突然需要一个数据指标,你会发现它已经在那里了。这种方法不能很好地扩展,但是目前为止,它就足够了。
  你的财务报告应在Quickbooks中完成。你的预测应该在Excel中完成。如果你从事订阅业务,请使用Baremetrics作为订阅指标。如果你从事电子商务业务,请使用你的购物车平台来衡量商品交易总额。不要太花哨。
  如果你不是技术人员,你可能需要一名工程师帮助你使用Google Analytics和事件跟踪功能。整个练习不需要超过一两个小时,包括阅读文档。花点时间建立Google Analytics是值得的。
  什么不该做
  与上面提到的完全相反。不要买别人的数据仓库,商务智能平台,大的咨询项目,或者...是的,你懂了。保持专注。当你坚持进行分析时,会有持续的花销、数据变化以及业务逻辑变化。一旦你开始这条路,你无法真正把项目暂停。等到公司发展到后期再开始投资。
  会有很多问题你们现在无法回答。这没关系(在现在阶段)。
  非常早期阶段
  (10至20名员工)
  你的团队有所增大。人们需要依赖数据来做工作。他们可能是、也可能不是数据专家,你需要确保他们做的事情基本上是正确的。
  什么该做
  你可能已经聘请了一个营销人员。确保他们使用Google Analytics。让他们负责,以保证数据是干净的。他们需要UTM代码,跟踪他们创建的每个链接。他们需要确保你的子域名不被双重跟踪。你的营销人员可能会说他们不会使用Google Analytics。不要听。网站上有足够的关于Google Analytics的信息,如果他们够聪明并且有动力,他们完全可以学习它并弄清楚。如果他们无法担任工作,就解雇他们,找别人(认真)。
  如果你有一两个销售人员并使用客户关系管理系统,请使用内置的报  创始阶段
  (0至10名员工)
  在这个阶段,你没有资源,没有时间。你需要衡量一百万件事情。但是你非常熟悉业务细节,你可以做出相当好的本能决定。你需要测量你的产品。因为你的产品指标,可帮助你在此关键阶段快速迭代。其他一切都可以往后排。
  什么该做
  通过 Google Tag Manager在你的网站上安装Google Analytics。数据不会很完美,这需要更多的工作来润色,但不要担心。
  如果你做电子商务业务,你确实需要确保你的Google Analytics电子商务数据良好。Google Analytics可以跟踪从访客到购买的整个电子商务业流程,所以你需要花时间来确保Google Analytics数据是正确的。
  构建任何类型的软件,你都需要实时的事件跟踪。我不在乎你使用什么工具——Mixpanel和Heap是类似的,他们都很好。在这一点上,我不会太在意你正在追踪的内容:只需使用Mixpanel的autotrack或者Heap的默认安装设置。如果你突然需要一个数据指标,你会发现它已经在那里了。这种方法不能很好地扩展,但是目前为止,它就足够了。
  你的财务报告应在Quickbooks中完成。你的预测应该在Excel中完成。如果你从事订阅业务,请使用Baremetrics作为订阅指标。如果你从事电子商务业务,请使用你的购物车平台来衡量商品交易总额。不要太花哨。
  如果你不是技术人员,你可能需要一名工程师帮助你使用Google Analytics和事件跟踪功能。整个练习不需要超过一两个小时,包括阅读文档。花点时间建立Google Analytics是值得的。
  什么不该做
  与上面提到的完全相反。不要买别人的数据仓库,商务智能平台,大的咨询项目,或者...是的,你懂了。保持专注。当你坚持进行分析时,会有持续的花销、数据变化以及业务逻辑变化。一旦你开始这条路,你无法真正把项目暂停。等到公司发展到后期再开始投资。
  会有很多问题你们现在无法回答。这没关系(在现在阶段)。
  非常早期阶段
  (10至20名员工)
  你的团队有所增大。人们需要依赖数据来做工作。他们可能是、也可能不是数据专家,你需要确保他们做的事情基本上是正确的。
  什么该做
  你可能已经聘请了一个营销人员。确保他们使用Google Analytics。让他们负责,以保证数据是干净的。他们需要UTM代码,跟踪他们创建的每个链接。他们需要确保你的子域名不被双重跟踪。你的营销人员可能会说他们不会使用Google Analytics。不要听。网站上有足够的关于Google Analytics的信息,如果他们够聪明并且有动力,他们完全可以学习它并弄清楚。如果他们无法担任工作,就解雇他们,找别人(认真)。
  如果你有一两个销售人员并使用客户关系管理系统,请使用内置的报告。确保你的员工知道如何使用它。你需要了解的只有,如阶段性的代表生产率和转换率等。Salesforce可以做到非常独特。不要将数据导出到Excel,在(可怕的)报告构建器中生成报告。即使这是痛苦的,这将在未来几个月节省大量的时间。
  你可能有几个人在做客户成功方面的工作。大多数平台帮助系统都没有很好的报告,所以选择可以在界面内轻松测量的关键绩效指标。
  确保跟踪净推荐值指数。使用Wootric或Delighted
  什么不该做
  数据仓库和基于SQL的分析还为时过早,因为建立它们需要太多时间。你需要花费所有时间做事,而不是分析,最直接的方法是使用你运营业务的各种SaaS产品的内置报告功能。你不应该雇用全职分析师。在这一点上,你有限的资金要花费到更多的重要的事情上。
  早期阶段
  (20至50名员工)
  这是事情变得有趣的地方,过去两年的改变真的开始变得明显。一旦你进行了A轮融资,并有20多名员工,你就有了新的选择。
  这些选择都是由一个事情驱动的:分析技术越来越好,越来越快。 以前,这种类型的基础工作被保留给更大的公司。自己分析的好处? 是有更可靠的指标,更多的灵活性和更好的未来增长平台。
  这是最困难和最关键的阶段:如果你做的对,这是有前途的,但如果你做错了就会很痛苦。
  什么该做
  建设数据基础。这意味着选择数据仓库,ETL工具和BI工具。对于数据仓库,选择使用“Snowflake ”和“Redshift”(我喜欢使用Snowflake进行选择)。对于ETL工具,使用Stitch和Fivetran。对于BI,使用Mode and Looker。这个有很多很多的产品;这六个是我们从客户的反馈中得知的。
  聘请强大的分析主管。今后,你将需要一个完整的专家分析团队:工程师,分析师,数据科学家...但现在,你只能支付(至多)一个人。你需要找到那个,能够在第1天就提供价值的特殊人才,并随着他的成长,可以雇用他周围的团队的人。这个人很难找到——投入时间去寻找他们。通常,这些人有咨询或财务方面的背景,他们有MBA学位。虽然这个人应该可以亲力亲为,撸起袖子大干一场。但是,你需要雇用一个可以专注于考虑数据以及关于你业务的人。策略:未来很多年,他们将成为你的分析难题中最重要的一部分。
  考虑聘请顾问。尽管你已经发现了分析主管,但是该人不具备将技术堆栈的所有组件结合在一起的专业知识,也不能解决你将面临的所有的不同问题的分析经验。随着你的成长,如果在这个关键阶段出现错误,那么以后会付出很多时间和金钱的代价,所以重要的是打下坚实的基础。为了做到这一点,今天更多的创业公司选择与顾问合作以帮助他们建立基础,然后在该基础架构周围建立一个团队。
  什么不该做
  除非机器学习是你产品的核心部分,否则请勿雇用数据科学家。你需要一名通才,而不是专家来建立你的分析团队。
  请不要建立自己的ETL传递途径。这将浪费数小时的工程时间。请到Stitch或Fivetran购买现货。
  不要使用我上面提到的两个以外的其他任何商务智能工具。你会在将来付出代价。
  请勿尝试使用像Postgres这样的更传统的数据库作为数据仓库。它不便宜,如果以后当你达到极限时才切换,将会是非常痛苦的。Postgres不能像数据仓库一样扩展。
  中期阶段
  (50至150名员工)
  这个阶段可能是最具挑战性的。你仍然拥有一个相对较小的团队和少量资源,但是你需要为企业提供越来越复杂和多样化的分析,你的工作可以直接影响到整个公司的成功或失败。别太有压力。
  重要的是在这里取得进展,同时确保你继续为未来增长阶段奠定基础。如果你不考虑未来,你在这个阶段所做出的决定可能会导致你直接陷入僵局。
  什么该做
  为基于SQL的数据建模,实施稳定的流程。你的数据模型是你分析业务的逻辑基础,并应在所有分析用例中共享(从商务智能到数据科学)。确保你的流程,允许所有用户对数据建模脚本进行更改,由版本控制,并在透明环境中运行。我们在维护一个名为dbt的开源产品,许多增长阶段的公司都使用这个产品来做建模。
  从你现有的网络分析和事件跟踪迁移到Snowplow Analytics。Snowplow具有所有付费工具都具备的功能,但它是开源的。你可以自己运营(只需支付你的EC2实例费用),或者你可以支付Snowplow或Fivetran,让他们帮助你运营。如果你不在此阶段进行这样的过渡,那么你将丢掉更多细节数据。而且你以后会收到来自Segment、Heap或Mixpanel的庞大的账单。一旦你挺过去这个阶段,这些付费工具就可以轻松收取每月最低10万美元的费用。
  深思熟虑地增长你的团队。你团队的核心人物应该始终是业务分析师:谁是SQL专家和你的商务智能工具。并花时间与业务用户合作,帮助他们服务于他们的数据请求。了解这个人的背景,以及如何训练和装备他们是非常重要的。在这个阶段你也应该聘请你的第一位数据科学家。在雇用经验丰富的(和昂贵的)数据科学人才之前,让你的数据基础架构和核心分析团队准备好,是非常重要的,但在某些时候你应该添加这个技能组。
  开始选择性地应对一些即将到来的挑战。预测比运行计数更难,但是潜伏在几个关键领域是非常有意义的。如果你是做SaaS业务的,你应该研究一个流失预测模型。如果你是做电子商务的,你必须要做一个需求预测模型。这些模型不需要特别复杂,但它们将比可以随便入侵的杂乱无章的Excel工作簿要好的多。
  花时间和精力找到你的营销归因。这是一个独立的自发博文,意思是说,你不能把这个关键的商业问题给交给第三方处理。
  什么不该做
  很容易被自己带上道,然后开始投资重型数据库基础设施。不要这样做。在这个阶段,主要的基础设施投资仍然是一个昂贵的部分。以下是如何保持灵活的一些建议:
  大力支持SQL和数据仓库。你可以使用数据仓库的,处理这个阶段几乎全部的操作。 你可以随便购买任何需要的数据仓库马力,因为支付服务器比支付人力要便宜得多。
  在Jupyter Notebooks中添加数据科学工作。如果数据已经在你的仓库中预先聚合,则通常不需要在Spark或Hadoop集群上进行此处理。
  寻找低成本的ETL数据集,我们不需要装配好的成品。这就是为什么我们喜欢Singer的原因之一。
  避免昂贵的琐碎小事,可以让你专注于解决实际的业务问题。
  成长阶段
  (150至500名员工)
  这个阶段需要创建扩展的分析流程。你需要取得两者的平衡。一者是你今天需要的答案,而另一者是当你扩大规模时,你需要执行的数据分析业务。
  有150名员工,你可能只有一个小团队(3-6人)全职专注于分析。当你拥有500名员工时,你可以轻松拥有30名或以上的员工分析数据。3-6名分析师可以以非常特殊的方式运作,非正式地交换知识(和代码)。当你有多于8名分析师时,这就要崩盘了。
  如果你不能很好地管理这种转换,

留下评论

您的电子邮箱地址不会被公开。